1.不等式的基本性质
2.几个重要不等式
基本不等式是解决函数值域、最值、不等式证明、参数范围问题的有效工具,在高考中经常考查,有时也会对其单独考查.题目难度为中等偏上.应用时,要注意“拆、拼、凑”等技巧,特别要注意应用条件,只有具备公式应用的三个条件时,才可应用,否则可能会导致结果错误.
知识网络
3.基础类型篇
题型一 对公式的简单运用
题型二:条件最值问题
【小结】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.
【小结】看好形式上的特点,分子分母同时除以自变量x,或通过其他变形出现基本不等式的可用情况,如积为定值的形式.需要注意的是等号成立的条件,如果不成立,则需转化为对勾函数的知识,运用求导并结合其图像解题.
题型四 多变量综合
▼
题型五 利用基本不等式证明
【小结】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.
题型六 基本不等式应用题
【小结】此题主要考察学生对直角三角形边角关系的应用,第二问还考察学生对两角差的正切公式和基本不等式的熟练运用,第一问属于简单题,第二问属于中等题.
以实际问题为背景的解题步骤:
(1)设变量时一般要把求最大值或最小值的变量定义为函数.
(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.
(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.
4.巩固加强篇
5.几个著名不等式
琴生不等式
6.不等式证明的几种常用方法
常用方法有:比较法(作差,作商法)、综合法、分析法;
其他方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.
常见不等式的放缩方法:
7.不等式证明的新法
在不等式的证明中有我们熟悉的常用的方法,如比较法、分析法、综合法、放缩法、反证法等;除此之外,如果我们从某些不等式结构和形式出发,把握其本质属性,结合已学过的其它知识,往往还可得到一些更加巧妙、新颖的解法。