在推理阶段,当输入长度为 ,我们仅需使用 即可预测出下一个token,但模型却会并行计算出 ,这部分会产生大量的冗余计算。而实际上 可直接通过公式 算出,即 的计算只与 、所有 和 有关。
KV Cache的本质是以空间换时间,它将历史输入的token的 和 缓存下来,避免每步生成都重新计算历史token的 和 以及注意力表示 ,而是直接通过 的方式计算得到 ,然后预测下一个token。
举个例子,用户输入“中国的首都”,模型续写得到的输出为“是北京”,KV Cache每一步的计算过程如下。
第一步生成时,缓存 均为空,输入为“中国的首都”,模型将按照常规方式并行计算:
并行计算得到每个token对应的 ,以及注意力表示 。
使用 预测下一个token,得到“是”。
更新缓存,令 , 。
第二步生成时,计算流程如下:
仅将“是”输入模型,对其词向量进行映射,得到 。
更新缓存,令 , 。
计算 ,预测下一个token,得到“北”
第三步生成时,计算流程如下:
仅将“北”输入模型,对其词向量进行映射,得到 。
更新缓存,令 , 。
计算 ,预测下一个token,得到“京”。
上述生成流程中,只有在第一步生成时,模型需要计算所有token的 ,并且缓存下来。此后的每一步,仅需计算当前token的 、 、 ,更新缓存 、 ,然后使用 、 、 即可算出当前token的注意力表示,最后用来预测一下个token。
Hungging Face对于KV Cache的实现代码如下,结合注释可以更加清晰地理解其运算过程:
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)query = self._split_heads(query, self.num_heads, self.head_dim) # 当前token对应的querykey = self._split_heads(key, self.num_heads, self.head_dim) # 当前token对应的keyvalue = self._split_heads(value, self.num_heads, self.head_dim) # 当前token对应的valueif layer_past is not None: past_key, past_value = layer_past # KV Cache key = torch.cat((past_key, key), dim=-2) # 将当前token的key与历史的K拼接 value = torch.cat((past_value, value), dim=-2) # 将当前token的value与历史的V拼接if use_cache is True: present = (key, value)else: present = None# 使用当前token的query与K和V计算注意力表示if self.reorder_and_upcast_attn: attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)else: attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)KV Cache是以空间换时间,当输入序列非常长的时候,需要缓存非常多k和v,显存占用非常大。为了缓解该问题,可以使用MQA、GQA、Page Attention等技术,在后续的文章中,我们也将对这些技术进行介绍。