Colon image analysis is an important step in diagnosing colon cancer, and achieving automated and accurate segmentation remains a challenging problem because of the diversity of cell shapes and boundaries in pathological sections. In this paper, we propose a U-shaped colon cancer segmentation network, which combines depth-separable convolution and morphological methods to reduce the number of model parameters and effectively improve segmentation accuracy. We improve the global and local feature capabilities by taking advantage of serial convolution and external focus as the underlying architecture for the model. We designed the skip connection to fuse the features from the encoder in a morphological way to enhance the morphological features. We introduced an edge enhancement module by extracting contour information using morphological methods to enhance edge features. We evaluated the proposed method on three colon cancer datasets, and the experimental results showed that our method with a small number of parameters has a Dice coefficient of 92.76% ± 5.86% on the Glas dataset, 86.11% ± 7.11% on the CoCaHis dataset, and 91.61% ± 11.25% on the Colon dataset. The code will be openly available at .
MMUNet:用于病理图像中结肠癌分割的形态特征增强网络,Biomedical Signal Processing and Control<结肠癌形状>
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lizi9903@foxmail.com举报,一经查实,本站将立刻删除。