知方号

知方号

大数据学习一般都学什么内容

大数据学习一般都学什么内容?

大数据学习内容:

1、Java编程

Java编程是大数据开发的基础,大数据中很多技术都是使用Java编写的,如Hadoop、Spark、mapreduce等,因此,想要学好大数据,Java编程是必备技能!

(推荐学习:java入门程序)

2、Linux运维

企业大数据开发往往是在Linux操作系统下完成的,因此,想从事大数据相关工作,需要掌握Linux系统操作方法和相关命令。

3、Hadoop

Hadoop是一个能够对大量数据进行分布式处理的软件框架,HDFS和MapReduce是其核心设计,HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算,是大数据开发必不可少的框架技能。

4、Zookeeper

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

5、Hive

hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。

6、Hbase

这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多

7、Kafka

Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据,通过Hadoop的并行加载机制来统一线上和离线的消息处理,通过集群来提供实时的消息。

8、Spark

Spark 是专为大规模数据处理而设计的快速通用的计算引擎,拥有Hadoop MapReduce所具有的优点,但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

1. 大数据需要学习的内容包括但不限于:数据结构与算法、数据库技术、数据挖掘与机器学习、分布式系统、云计算、统计学等。

2. 这些内容是因为大数据处理需要用到大量的数据存储、处理和分析技术,同时也需要对数据进行深入的挖掘和分析,因此需要掌握相关的技术和知识。

3. 此外,随着大数据技术的不断发展,还需要不断学习和更新自己的知识,掌握新的技术和工具,以适应不断变化的市场需求

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lizi9903@foxmail.com举报,一经查实,本站将立刻删除。