知方号

知方号

深度解析

一、Logistic回归的类型

Logistic回归(又称逻辑回归)是一种广义的线性回归分析模型,用于研究分类型因变量与自变量之间影响关系。Logistic回归分析根据因变量的不同可分为二元Logistic回归、多分类Logistic回归,有序Logistic回归三类,说明如下:

二元 Logistic 回归: 因变量只有两种结局,且结局是互斥的,如是与否、死亡与未死亡等。多分类 Logistic 回归: 因变量是无序多分类变量,如某研究想了解不同性别、年龄等对于手机品牌偏好的不同,该因变量即为无序多分类变量,该问题适合采用多分类Logistic 回归进行分析。有序 Logistic 回归:

因变量为有序分类变量(等级数据),如医学研究中关于某病的治疗效果,无效=1,有效=2,痊愈=3,如果要研究疗效的影响因素,则采用有序Logistic回归。

二、二元Logistic回归分析原理

逻辑回归中二元Logistic回归最为常用。二元Logistic回归分析适用于研究因变量为二分类变量的数据,二分类变量即为那些结局只有两种可能性的变量。

因变量Y:只能用数字0、1表示,若不是需要进行数据编码。自变量X:既可以是定量数据也可以是定类数据,定类数据要进行哑变量处理。 1、模型公式

二元Logistic回归模型公式如下:

其中,指标项说明如下:

2、逐步法筛选自变量

和线性回归类似,多因素 Logistic 回归也可采用逐步回归方法对变量进行筛选,如向前法、向后法或逐步法,尤其逐步法在多因素 Logistic 回归中受到科研工作的青睐。此处注意,SPSSAU 平台会采用 Wald 检验进行对自变量的逐步筛选。

三、二元Logistic回归案例实战

二元Logistic回归分析一般步骤如下:

案例背景:研究者收集了银行贷款客户的个人负债信息,以及曾经是否有过还贷违约记录,数据赋值说明如下表所示,试分析是否违约的相关因素。

接下来按二元Logistic回归分析的一般步骤进行分析。

1、基本条件判断

(1)因变量类型:

研究贷款违约发生的相关因素,因变量“曾经违约”有两种结局“是”与“否”,因此选择使用二元Logistic 回归。(2)多重共线性判断:

使用SPSSAU【进阶方法】模块的【共线性分析】进行多重共线性诊断,将所有变量拖拽到右侧分析框,点击开始分析,操作如下图:

共线性问题分析的判断标准上,通常有两种,分别是Pearson相关系数和VIF法。本例以Pearson相关系数法为例,通常以其绝对值大于0.8作为标准,输出结果如下:

分析上表可知,变量间相关系数均小于0.8,可认为不存在多重共线性问题,可以继续分析。

2、建立Logistic回归模型

建立Logistic回归模型前需要进行单因素筛查、因变量0-1编码和分类自变量哑变量处理。

(1)单因素筛查

建立 Logistic 回归模型的过程,较常见的是“先单后多”,即先通过单因素分析筛选自变量,然后仅保留有显著影响的自变量进行多因素回归。这种场景在探索性研究目的、自变量较多或样本量不足的情况下应用较多。 单因素分析的常见方法有卡方检验、t 检验、方差分析和秩和检验,为避免遗漏重要变量,差异的显著性水平可以由 0.05 适当放宽至 0.1、0.15,甚至 0.2。 本案例自变量包括四个定量变量(家庭收入、负债收入比率、信用卡负债、其他负债),四个定类变量(年龄、教育水平、当前雇佣时长、当前居住时长),分别使用t检验对定量自变量进行单因素筛查,使用卡方检验对定类自变量进行单因素筛查,并将显著性水平放宽至0.1。

单因素筛查1——t检验

SPSSAU操作如下图:

SPSSAU输出t检验结果如下:

分析上表可知,四个定量自变量的p值均小于0.1,因此会对曾经违约产生显著影响,均保留。

单因素筛查2——卡方检验

SPSSAU操作如下图:

SPSSAU输出卡方检验分析结果如下:

分析上表可知:四个定类自变量的p值均小于0.1,因此会对曾经违约产生显著影响,均保留。【提示】:有一点必须明确,在进行多因素 Logistic回归前进行单因素筛选并不是绝对的,在样本量充足、研究目标明确、有足够专业理论支持的情况下,可将所有自变量一起进行多因素 Logistic 回归。

(2)因变量0-1编码

进行二元Logistic回归分析,因变量必须为使用数字0、1表示(本案例为0、1表示),若非如此,需要使用SPSSAU【数据处理】模块的【数据编码】进行处理,操作如下图:

(3)定类自变量哑变量处理

对于四个定类自变量需要对其进行哑变量处理,在【数据处理】模块,选择【生成变量】进行哑变量处理,操作如下图:

(4)二元Logistic回归分析

在SPSSAU选择【二元Logit】,自变量拖拽到右侧分析框,注意本例全部选择定类变量的第一个水平作为参照,4 个定类变量的一水平哑变量不移入分析框中,选择变量进入方法为“逐步法”,操作如下图:

3、模型整体检验与评价

(1)似然比卡方检验

似然比检验用于检验模型整体的有效性,如果p值小于0.05,则说明模型有效;反之则说明模型无效。

分析上表可知:χ2 =229.287,p0.05,说明模型拟合良好。

(3)决定系数R方

在模型分析结果汇总表(偏回归系数解释时使用),即下表的底部,SPSSAU提供了3个伪 R2指标,其含义类似线性回归中的决定系数R2 ,取值越大越好,在实际分析中应用较少,可以不做关注。

(4)模型预测准确率

本例二元 Logistic 回归模型对结局 0 即未违约的预测准确率为 93.04%(481/517),对结局为 1 即违约的预测准确率为 45.90%,总体预测准确率为 80.71%。从银行贷款业务风险预警角度来看,本例更关注对违约结局的预测能力,显然 45.90%是比较低的,该模型的实用价值有待进一步提高。【注意】:有些研究并不看中模型的预测能力,而主要关注的是因变量的相关影响因素。

4、回归系数/OR值解读

回归系数与OR值的关系

OR 值等于回归系数的自然对数值。若自变量X的偏回归系数为0.6,则其OR=exp(0.6)

若 β j < 0,则 OR 值小于 1,表示该因素是保护或抑制因素。若 β j = 0,则 OR 值等于 1,表示该因素对结局的发生与否不起作用。若 β j > 0,则 OR 值大于 1,表示该因素是危险或促进因素。

SPSSAU输出二元Logistic回归分析结果如下。通过逐步法,模型能自动根据显著性情况对自变量进行引入或剔除,最终保留了以下变量均对因变量“曾经违约”的影响有统计学意义。

表中重点是各因素的回归系数、OR 值及其95%CI。

(1)定量变量解读

两个定量数据“负债收入比率”“信用卡负债”的回归系数为正数,认为其与“是否违约”存在正向相关关系。相对应的 OR 值大于 1,OR 值 95% CI 不包括 1,说明“负债收入比率”“信用卡负债”越高越容易出现偿还贷款违约的情况。 以“信用卡负债”为例:

Wald χ2=29.666,p1,说明其为发生违约的危险因素或促进因素,“信用卡负债”每增加一个单位,其发生违约的可能性是原来的 1.530 倍,或发生违约的可能性比原来增加 53%。

(2)定类变量解读

4 个哑变量的偏回归系数均为负数,说明其与“曾经违约”存在负相关关系,相对应的 OR 值均小于 1,OR 值 95% CI 不包括 1,说明变量对“是否违约”起抑制作用,“当前居住时长”“当前工作时长”越长(相对于参照项—最低水平哑变量时长越长)越不容易出现还贷违约的情况。 以“当前雇佣时长_10 年以上”为例:

Wald χ2=67.611,p

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lizi9903@foxmail.com举报,一经查实,本站将立刻删除。