知方号

知方号

25高数考研张宇 <常用导数合集公式表>

1. 两个重要极限

(1) lim ⁡ x → 0 sin ⁡ x x = 1 lim _{x ightarrow 0} frac{sin x}{x}=1 limx→0​xsinx​=1, 推广形式 lim ⁡ f ( x ) → 0 sin ⁡ f ( x ) f ( x ) = 1 lim _{f(x) ightarrow 0} frac{sin f(x)}{f(x)}=1 limf(x)→0​f(x)sinf(x)​=1. (2) lim ⁡ x → ∞ ( 1 + 1 x ) x = e lim _{x ightarrow infty}left(1+frac{1}{x} ight)^x=mathrm{e} limx→∞​(1+x1​)x=e, 推广形式 lim ⁡ x → 0 ( 1 + x ) 1 x = e , lim ⁡ f ( x ) → ∞ [ 1 + 1 f ( x ) ] f ( x ) = e lim _{x ightarrow 0}(1+x)^{frac{1}{x}}=mathrm{e}, lim _{f(x) ightarrow infty}left[1+frac{1}{f(x)} ight]^{f(x)}=mathrm{e} limx→0​(1+x)x1​=e,limf(x)→∞​[1+f(x)1​]f(x)=e

2. 常用的等价无穷小量及极限公式

(1) 当 x → 0 x ightarrow 0 x→0 时,常用的等价无穷小

(1) x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 x sim sin x sim an x sim arcsin x sim arctan x sim ln (1+x) sim mathrm{e}^x-1 x∼sinx∼tanx∼arcsinx∼arctanx∼ln(1+x)∼ex−1.(2) 1 − cos ⁡ x ∼ 1 2 x 2 , 1 − cos ⁡ b x ∼ b 2 x 2 ( b ≠ 0 ) 1-cos x sim frac{1}{2} x^2, 1-cos ^b x sim frac{b}{2} x^2(b eq 0) 1−cosx∼21​x2,1−cosbx∼2b​x2(b​=0).(3) a x − 1 ∼ x ln ⁡ a ( a > 0 a^x-1 sim x ln a(a>0 ax−1∼xlna(a>0, 且 a ≠ 1 ) a eq 1) a​=1).(4) ( 1 + x ) α − 1 ∼ α x ( α ≠ 0 ) (1+x)^alpha-1 sim alpha x (alpha eq 0) (1+x)α−1∼αx(α​=0).

(2) 当 n → ∞ n ightarrow infty n→∞ 或 x → ∞ x ightarrow infty x→∞ 时,常用的极限公式

(1) lim ⁡ n → ∞ n n = 1 , lim ⁡ n → ∞ a n = 1 ( a > 0 ) lim _{n ightarrow infty} sqrt[n]{n}=1, lim _{n ightarrow infty} sqrt[n]{a}=1(a>0) limn→∞​nn ​=1,limn→∞​na ​=1(a>0).(2) lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 b m x m + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 = { a n b m , n = m , 0 , n < m , ∞ , n > m , lim _{x ightarrow infty} frac{a_n x^n+a_{n-1} x^{n-1}+cdots+a_1 x+a_0}{b_m x^m+b_{m-1} x^{m-1}+cdots+b_1 x+b_0}=left{egin{array}{ll}frac{a_n}{b_m}, & n=m, \ 0, & nm,end{array} ight. limx→∞​bm​xm+bm−1​xm−1+⋯+b1​x+b0​an​xn+an−1​xn−1+⋯+a1​x+a0​​=⎩⎨⎧​bm​an​​,0,∞,​n=m,nm,​ 其中 a n , b m a_n, b_m an​,bm​ 均不

为 0 .

(3) lim ⁡ n → ∞ x n = { 0 , ∣ x ∣ < 1 , ∞ , ∣ x ∣ > 1 , 1 , x = 1 ,  不存在,  x = − 1 ; lim ⁡ n → ∞ e n x = { 0 , x < 0 , + ∞ , x > 0 , 1 , x = 0. lim _{n ightarrow infty} x^n=left{egin{array}{ll}0, & |x|1, \ 1, & x=1, \ ext { 不存在, } & x=-1 ;end{array} lim _{n ightarrow infty} mathrm{e}^{n x}= egin{cases}0, & x0, \ 1, & x=0 .end{cases} ight. limn→∞​xn=⎩⎪⎪⎨⎪⎪⎧​0,∞,1, 不存在, ​∣x∣1,x=1,x=−1;​limn→∞​enx=⎩⎪⎨⎪⎧​0,+∞,1,​x0,x=0.​(4) 若 lim ⁡ g ( x ) = 0 , lim ⁡ f ( x ) = ∞ lim g(x)=0, lim f(x)=infty limg(x)=0,limf(x)=∞, 且 lim ⁡ g ( x ) f ( x ) = A lim g(x) f(x)=A limg(x)f(x)=A, 则有 lim ⁡ [ 1 + g ( x ) ] f ( x ) = e A . lim [1+g(x)]^{f(x)}=mathrm{e}^A . lim[1+g(x)]f(x)=eA. 3. x → 0 x ightarrow 0 x→0 时常见的麦克劳林公式

sin ⁡ x = x − 1 3 ! x 3 + o ( x 3 ) , cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + o ( x 4 ) , tan ⁡ x = x + 1 3 x 3 + o ( x 3 ) , arcsin ⁡ x = x + 1 3 ! x 3 + o ( x 3 ) , arctan ⁡ x = x − 1 3 x 3 + o ( x 3 ) , ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + o ( x 3 ) , e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + o ( x 3 ) , ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + o ( x 2 ) . egin{aligned} & sin x=x-frac{1}{3 !} x^3+oleft(x^3 ight), quad cos x=1-frac{1}{2 !} x^2+frac{1}{4 !} x^4+oleft(x^4 ight),\ \ & an x=x+frac{1}{3} x^3+oleft(x^3 ight), quad arcsin x=x+frac{1}{3 !} x^3+oleft(x^3 ight), \ \ & arctan x=x-frac{1}{3} x^3+oleft(x^3 ight), quad ln (1+x)=x-frac{1}{2} x^2+frac{1}{3} x^3+oleft(x^3 ight), \ \ & mathrm{e}^x=1+x+frac{1}{2 !} x^2+frac{1}{3 !} x^3+oleft(x^3 ight),(1+x)^a=1+a x+frac{a(a-1)}{2 !} x^2+oleft(x^2 ight) . end{aligned} ​sinx=x−3!1​x3+o(x3),cosx=1−2!1​x2+4!1​x4+o(x4),tanx=x+31​x3+o(x3),arcsinx=x+3!1​x3+o(x3),arctanx=x−31​x3+o(x3),ln(1+x)=x−21​x2+31​x3+o(x3),ex=1+x+2!1​x2+3!1​x3+o(x3),(1+x)a=1+ax+2!a(a−1)​x2+o(x2).​

当 x → 0 x ightarrow 0 x→0 时,由以上公式可以得到以下几组“差函数”的等价无穷小代换式:

x − sin ⁡ x ∼ x 3 6 , tan ⁡ x − x ∼ x 3 3 , x − ln ⁡ ( 1 + x ) ∼ x 2 2 x-sin x sim frac{x^3}{6}, quad an x-x sim frac{x^3}{3}, quad x-ln (1+x) sim frac{x^2}{2} x−sinx∼6x3​,tanx−x∼3x3​,x−ln(1+x)∼2x2​, arcsin ⁡ x − x ∼ x 3 6 , x − arctan ⁡ x ∼ x 3 3 arcsin x-x sim frac{x^3}{6}, quad x-arctan x sim frac{x^3}{3} arcsinx−x∼6x3​,x−arctanx∼3x3​.

4. 基本导数公式

( x μ ) ′ = μ x μ − 1 ( μ 为 常 数 ) , ( a x ) ′ = a x ln ⁡ a ( a > 0 , a ≠ 1 ) , ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( a > 0 , a ≠ 1 ) , ( ln ⁡ x ) ′ = 1 x , ( sin ⁡ x ) ′ = cos ⁡ x , ( cos ⁡ x ) ′ = − sin ⁡ x , ( arcsin ⁡ x ) ′ = 1 1 − x 2 , ( arccos ⁡ x ) ′ = − 1 1 − x 2 , ( tan ⁡ x ) ′ = sec ⁡ 2 x , ( cot ⁡ x ) ′ = − csc ⁡ 2 x , ( arctan ⁡ x ) ′ = 1 1 + x 2 , ( arccot ⁡ x ) ′ = − 1 1 + x 2 , ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x , ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x , [ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 , , [ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 egin{array}{ll} left(x^mu ight)^{prime}=mu x^{mu-1} ( mu 为常数), & left(a^x ight)^{prime}=a^x ln a(a>0, a eq 1), \ \ left(log _a x ight)^{prime}=frac{1}{x ln a}(a>0, a eq 1) , & (ln x)^{prime}=frac{1}{x}, \ \ (sin x)^{prime}=cos x, & (cos x)^{prime}=-sin x, \ \ (arcsin x)^{prime}=frac{1}{sqrt{1-x^2}}, & (arccos x)^{prime}=-frac{1}{sqrt{1-x^2}}, \ \ ( an x)^{prime}=sec ^2 x, & (cot x)^{prime}=-csc ^2 x, \ \ (arctan x)^{prime}=frac{1}{1+x^2}, & (operatorname{arccot} x)^{prime}=-frac{1}{1+x^2}, \ \ (sec x)^{prime}=sec x an x, & (csc x)^{prime}=-csc x cot x, \ \ {left[ln left(x+sqrt{x^2+1} ight) ight]^{prime}=frac{1}{sqrt{x^2+1}},}, & {left[ln left(x+sqrt{x^2-1} ight) ight]^{prime}=frac{1}{sqrt{x^2-1}}} end{array} (xμ)′=μxμ−1(μ为常数),(loga​x)′=xlna1​(a>0,a​=1),(sinx)′=cosx,(arcsinx)′=1−x2 ​1​,(tanx)′=sec2x,(arctanx)′=1+x21​,(secx)′=secxtanx,[ln(x+x2+1 ​)]′=x2+1 ​1​,,​(ax)′=axlna(a>0,a​=1),(lnx)′=x1​,(cosx)′=−sinx,(arccosx)′=−1−x2 ​1​,(cotx)′=−csc2x,(arccotx)′=−1+x21​,(cscx)′=−cscxcotx,[ln(x+x2−1 ​)]′=x2−1 ​1​​ 三角函数六边形记忆法:

注: 变限积分求导公式. 设 F ( x ) = ∫ φ 2 ( x ) φ 1 ( x ) f ( t ) d t F(x)=int_{varphi_2(x)}^{varphi_1(x)} f(t) mathrm{d} t F(x)=∫φ2​(x)φ1​(x)​f(t)dt, 其中 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上连续, 可导函数 φ 1 ( x ) varphi_1(x) φ1​(x) 和 φ 2 ( x ) varphi_2(x) φ2​(x) 的值域在 [ a , b ] [a, b] [a,b] 上, 则在函数 φ 1 ( x ) varphi_1(x) φ1​(x) 和 φ 2 ( x ) varphi_2(x) φ2​(x) 的公共定义域上有: F ′ ( x ) = d d x [ ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t ] = f [ φ 2 ( x ) ] φ 2 ′ ( x ) − f [ φ 1 ( x ) ] φ 1 ′ ( x ) . F^{prime}(x)=frac{mathrm{d}}{mathrm{d} x}left[int_{varphi_1(x)}^{varphi_2(x)} f(t) mathrm{d} t ight]=fleft[varphi_2(x) ight] varphi_2^{prime}(x)-fleft[varphi_1(x) ight] varphi_1^{prime}(x) . F′(x)=dxd​[∫φ1​(x)φ2​(x)​f(t)dt]=f[φ2​(x)]φ2′​(x)−f[φ1​(x)]φ1′​(x).

5. 几个重要函数的麦克劳林展开式

(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) mathrm{e}^x=1+x+frac{1}{2 !} x^2+cdots+frac{1}{n !} x^n+oleft(x^n ight) ex=1+x+2!1​x2+⋯+n!1​xn+o(xn).

(2) sin ⁡ x = x − 1 3 ! x 3 + ⋯ + ( − 1 ) n 1 ( 2 n + 1 ) ! x 2 n + 1 + o ( x 2 n + 1 ) sin x=x-frac{1}{3 !} x^3+cdots+(-1)^n frac{1}{(2 n+1) !} x^{2 n+1}+oleft(x^{2 n+1} ight) sinx=x−3!1​x3+⋯+(−1)n(2n+1)!1​x2n+1+o(x2n+1).

(3) cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − ⋯ + ( − 1 ) n 1 ( 2 n ) ! x 2 n + o ( x 2 n ) cos x=1-frac{1}{2 !} x^2+frac{1}{4 !} x^4-cdots+(-1)^n frac{1}{(2 n) !} x^{2 n}+oleft(x^{2 n} ight) cosx=1−2!1​x2+4!1​x4−⋯+(−1)n(2n)!1​x2n+o(x2n).

(4) 1 1 − x = 1 + x + x 2 + ⋯ + x n + o ( x n ) , ∣ x ∣ < 1 frac{1}{1-x}=1+x+x^2+cdots+x^n+oleft(x^n ight),|x|

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lizi9903@foxmail.com举报,一经查实,本站将立刻删除。