专业财税服务推荐

精选优质财税服务,为企业提供专业、可靠的财税解决方案,助力企业健康发展

零报税代理记账
零申报代理记账
报税做账算帐财务报表老会计做账
代理记账
咨询微信:lhy_happyday
工商营业执照年度年报年检公示
全国个体、企业、公司、合作社工商年审年报服务!
个体/10元/次 企业/20元/次
咨询微信:lhy_happyday
财税咨询服务
一对一专业财税咨询,解决企业财税难题,提供定制方案
咨询微信:lhy_happyday
财务分析服务
小规模个体报税0申报税务年报工商年报月报季报报税代理记账
咨询微信:lhy_happyday
立即咨询专业财税顾问
微信号: lhy_happyday
会计从业9年,管理多家个体工商、小规模、一般纳税人等企业的财务、税务等相关工作!。
扫码或搜索添加微信,备注"财税咨询"获取专属优惠
知方号 知方号

Solute Partitioning partitioning coefficient

PreviousNext Solute Partitioning

The TLP Phase Diagrams and Solidification explains the method for determining the concentrations and proportions of the phases formed in solidification of a binary alloy, from the phase diagram, assuming that equilibrium can be achieved, and the most thermodynamically favourable phases formed. This method is known as the lever rule.

Consider the case of a binary alloy, Al-5wt%Cu:

The phase diagram shows that the first solid formed, CS, at 650 °C, will be 0.5 wt%Cu, but the stable phase after total solidification is a complete solid solutionwith a concentration of 5 wt%Cu. Clearly there will need to be significant diffusion in the solid to allow the solute to distribute evenly, and for equilibrium to occur.

This diffusion can be described mathematically by Fick’s laws:

[J = - Dleft( {frac{{partial C}}{{partial x}}} ight)]

[left( {frac{{partial C}}{{partial t}}} ight) = Dleft( {frac{{{partial ^2}C}}{{partial {x^2}}}} ight)]

The self diffusion coefficient in the solid phase, Ds, varies from about 10-10 to 10-14 m2 s-1 at the melting point, depending on the material in question, and also obeys Arrhenius’ equation for temperature dependency:

[D = {D_0}exp left( {frac{{ - Q}}{{RT}}} ight)]

Values of diffusivity in most liquid metals are significantly higher, of the order of 10-9 m2 s-1, but also obey Arrhenius’ law.

The graph below shows how the self-diffusivity (diffusivity), D, varies with the undercooling below the melting temperature, Tm, in copper.

The interdiffusivity (diffusivity) in the alloy will behave in a similar way, so we can see that unless the alloy is cooled very slowly, the diffusivity will drop off rapidly before significant diffusion can occur into the solid, resulting in “coring” of grains, with lower solute concentration at the centre, where the first solid formed; and higher solute concentration at the edges. If the solute partitioning is extensive enough to raise the concentration of the liquid to the eutectic composition (eutectic) the remaining liquid will then freeze with that composition in a eutectic structure, as in the micrograph of an Al-5 wt% Cu (5% copper, and 95% aluminium, by weight) alloy shown below:

The pale areas are dendrites with a structure based on Al, getting darker towards the edges as the Cu concentration increases. The dark areas are the eutectic that forms in between the dendrites as fine lamellae of Al and CuAl2.

In order to obtain quantitative expressions for the way solute is distributed, we need to use a quantity known as the partition coefficient, k, given by:

[k = frac{{{C_S}}}{{{C_L}}}]

This is the ratio of the concentrations at the solidus , and liquidus , CL, at a given temperature. It determines the extent to which solute is ejected into the liquid during solidification. If the solidus and liquidus are straight lines, then k is independent of temperature. The calculation of k is shown in the Bi-Sn phase diagram below:

In most cases, the liquidus and solidus are not straight lines, but they are often close enough that we can assume that k is independent of temperature. Also, it is often the case that k is less than one, so that the solid forming is of a higher purity than the liquid.

PreviousNext

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lizi9903@foxmail.com举报,一经查实,本站将立刻删除。