知方号

知方号

Metabolic alterations drive inflammatory phenotypes in CHIP

Summary

Mutations in DNA methyltransferase 3 alpha (DNMT3A) are the most frequent driver of clonal hematopoiesis of indeterminate potential (CHIP), and associated with higher risk of cardiovascular disease and pro-inflammatory activation of immune cells. Here, we investigated the mechanisms underlying DNMT3A CHIP-associated inflammatory phenotypes in macrophages. We show that monocytes of DNMT3A CHIP-driver mutation carriers are associated with DNA hypomethylation of succinate dehydrogenase A (SDHA) and an altered tricarboxylic acid cycle metabolite profile. Silencing of DNMT3A in monocytes increased SDHA and elevated mitochondria complex II activity. The secreted complex II product, malate, further increased inflammatory activation in wild type monocytes to further augment inflammation in a paracrine manner. Pharmacological inhibition of SDHA (using dimethyl malonate) in mice harboring DNMT3A mutations in hematopoietic stem cells ameliorated the inflammatory response and improved cardiac function after myocardial infarction. Thus, interfering with the altered metabolic state may provide a new therapeutic option to dampen inflammatory activation in DNMT3A CHIP carrying patients.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lizi9903@foxmail.com举报,一经查实,本站将立刻删除。