The emergence of multi-drug resistant (MDR) pathogens is a major public health concern, posing a substantial global economic burden. Photothermal therapy (PTT) at mild temperature presents a promising alternative to traditional antibiotics due to its biological safety and ability to circumvent drug resistance. However, the efficacy of mild PTT is limited by bacterial thermotolerance. Herein, a nanocomposite, BP@Mn-NC, comprising black phosphorus nanosheets and a manganese-based nanozyme (Mn-NZ) is developed, which possesses both photothermal and catalytic properties. Mn-NZ imparts glucose oxidase- and peroxidase-like properties to BP@Mn-NC, generating reactive oxygen species (ROS) that induce lipid peroxidation and malondialdehyde accumulation across the bacterial cell membrane. This process disrupts unprotected respiratory chain complexes exposed on the bacterial cell membrane, leading to a reduction in the intracellular adenosine triphosphate (ATP) content. Consequently, mild PTT mediated by BP@Mn-NC effectively eliminates MDR infections by specifically impairing bacterial thermotolerance because of the dependence of bacterial heat shock proteins (HSPs) on ATP molecules for their proper functioning. This study paves the way for the development of a novel photothermal strategy to eradicate MDR pathogens, which targets bacterial HSPs through ROS-mediated inhibition of bacterial respiratory chain activity.
黑磷/MnO2纳米复合材料破坏细菌耐热性,实现高效的温和温度光热治疗,Advanced Science<细菌耐热的最高温度>
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lizi9903@foxmail.com举报,一经查实,本站将立刻删除。