知方号

知方号

微积分/高等数学无穷级数 之 和函数的快速求法(九阴真经)<收敛半径的公式推导是什么>

本笔记资料中的方法是考研数学王谱老师的“九阴真经”,对于求和函数的题可快速解决. 现将笔记分享出来,也方便自己翻阅笔记.

前言

此类题目的出题方式一般为给出无穷级数,要求写出和函数及收敛域. 本笔记中的方法是先记住常用的九个无穷级数(不妨称其为“标准型”),对于具体题目,可先将原级数进行因式分解等操作,然后化作九种标准型的和、差即可快速写出和函数.

对于收敛域的求法,则可根据阿贝尔判别法求出收敛区间,再对区间端点单独做验证即可求出收敛域.

九个无穷级数的标准型可分为三大类,即整式型、分式型、阶乘型,值得注意的是本笔记中给出的顺序具有一定规律(可自行体会),根据规律进行记忆更加快速.

一、整式型

{ ( a ) ∑ n = 0 ∞ x n = 1 1 − x    ( 收敛域 ( − 1 , 1 ) ) ( b ) ∑ n = 0 ∞ ( n + 1 ) x n = 1 ( 1 − x ) 2    ( 收敛域 ( − 1 , 1 ) ) ( c ) ∑ n = 0 ∞ ( n + 2 ) ( n + 1 ) x n = 2 ( 1 − x ) 3    ( 收敛域 ( − 1 , 1 ) ) egin{cases} left( mathrm{a} ight) sum_{n=0}^{infty}{x^n}=frac{1}{1-x},,left( ext{收敛域}left( -1,1 ight) ight)\ \ left( mathrm{b} ight) sum_{n=0}^{infty}{left( n+1 ight) x^n}=frac{1}{left( 1-x ight) ^2},,left( ext{收敛域}left( -1,1 ight) ight)\ \ left( mathrm{c} ight) sum_{n=0}^{infty}{left( n+2 ight) left( n+1 ight) x^n}=frac{2}{left( 1-x ight) ^3},,left( ext{收敛域}left( -1,1 ight) ight)\ end{cases} ⎩ ⎨ ⎧​(a)∑n=0∞​xn=1−x1​(收敛域(−1,1))(b)∑n=0∞​(n+1)xn=(1−x)21​(收敛域(−1,1))(c)∑n=0∞​(n+2)(n+1)xn=(1−x)32​(收敛域(−1,1))​

【例1】(2014·数学三) 求幂级数 ∑ n = 0 ∞ ( n + 1 ) ( n + 3 ) x n sum_{n=0}^{infty}{left( n+1 ight) left( n+3 ight) x^n} ∑n=0∞​(n+1)(n+3)xn的收敛域及和函数.

解: 收敛域 ( − 1 , 1 ) (-1,1) (−1,1).

注意需将级数先改写为 n = 0 , x n n=0,x^n n=0,xn的标准型.

S ( x ) = ∑ n = 0 ∞ ( n + 1 ) ( n + 3 ) x n = ∑ n = 0 ∞ ( n + 1 ) ( n + 2 ) x n + ∑ n = 0 ∞ ( n + 1 ) x n = 2 ( 1 − x ) 3 + 1 ( 1 − x ) 2 . egin{aligned} S(x)&= sum_{n=0}^{infty}{left( n+1 ight) left( n+3 ight) x^n} \ &=sum_{n=0}^{infty}{left( n+1 ight) left( n+2 ight) x^n}+sum_{n=0}^{infty}{left( n+1 ight) x^n} \ &=frac{2}{left( 1-x ight) ^3}+frac{1}{left( 1-x ight) ^2}. end{aligned} S(x)​=n=0∑∞​(n+1)(n+3)xn=n=0∑∞​(n+1)(n+2)xn+n=0∑∞​(n+1)xn=(1−x)32​+(1−x)21​.​

二、分式型

{ ( d ) ∑ n = 0 ∞ x n + 1 n + 1 = − ln ⁡ ( 1 − x )    ( 收敛域 [ − 1 , 1 ) ) ( e ) ∑ n = 0 ∞ x 2 n + 1 2 n + 1 = 1 2 ln ⁡ 1 + x 1 − x = tanh ⁡ − 1 x    ( 收敛域 ( − 1 , 1 ) ) ( f ) ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = arctan ⁡ x    ( 收敛域 [ − 1 , 1 ] ) egin{cases} left( mathrm{d} ight) sum_{n=0}^{infty}{frac{x^{n+1}}{n+1}}=-ln left( 1-x ight) ,, left( ext{收敛域}left[ -1,1 ight) ight)\ \ left( mathrm{e} ight) sum_{n=0}^{infty}{frac{x^{2n+1}}{2n+1}}=frac{1}{2}ln frac{1+x}{1-x}= anh ^{-1}x,, left( ext{收敛域}left( -1,1 ight) ight)\ \ left( mathrm{f} ight) sum_{n=0}^{infty}{left( -1 ight) ^nfrac{x^{2n+1}}{2n+1}}=arctan x,, left( ext{收敛域}left[ -1,1 ight] ight)\ end{cases} ⎩ ⎨ ⎧​(d)∑n=0∞​n+1xn+1​=−ln(1−x)(收敛域[−1,1))(e)∑n=0∞​2n+1x2n+1​=21​ln1−x1+x​=tanh−1x(收敛域(−1,1))(f)∑n=0∞​(−1)n2n+1x2n+1​=arctanx(收敛域[−1,1])​

【例2】(1987·数学一) 求幂级数 ∑ n = 1 ∞ 1 n ⋅ 2 n x n − 1 sum_{n=1}^{infty}{frac{1}{ncdot 2^n}x^{n-1}} ∑n=1∞​n⋅2n1​xn−1的和函数.

解:

注意先凑分母

x ≠ 0 时, S ( x ) = ∑ n = 1 ∞ 1 n ⋅ 2 n x n − 1 = ∑ n = 0 ∞ 1 n + 1 ⋅ x n 2 n + 1 = 1 x ∑ n = 0 ∞ 1 n + 1 ⋅ ( x 2 ) n + 1 = − 1 x ln ⁡ ( 1 − x 2 ) egin{aligned} x e0时, Sleft( x ight) &=sum_{n=1}^{infty}{frac{1}{ncdot 2^n}x^{n-1}} \ &=sum_{n=0}^{infty}{frac{1}{n+1}cdot frac{x^n}{2^{n+1}}} \ &=frac{1}{x}sum_{n=0}^{infty}{frac{1}{n+1}cdot left( frac{x}{2} ight) ^{n+1}} \ &=-frac{1}{x}ln left( 1-frac{x}{2} ight) end{aligned} x=0时,S(x)​=n=1∑∞​n⋅2n1​xn−1=n=0∑∞​n+11​⋅2n+1xn​=x1​n=0∑∞​n+11​⋅(2x​)n+1=−x1​ln(1−2x​)​ 因此和函数 S ( x ) = { − 1 x ln ⁡ ( 1 − x 2 ) , x ≠ 0 1 2 , x = 0 Sleft( x ight) = egin{cases} -frac{1}{x}ln left( 1-frac{x}{2} ight) ,x e 0\ frac{1}{2},x=0\ end{cases} S(x)={−x1​ln(1−2x​),x=021​,x=0​

【例3】(2009·数学一) 设 a n a_n an​为曲线 y = x n y=x^n y=xn与 y = x n + 1 ( n = 1 , 2 , . . . ) y=x^{n+1}(n=1,2,...) y=xn+1(n=1,2,...)所围成区域的面积,记 S 1 = ∑ n = 1 ∞ a n S_1=sum_{n=1}^{infty}a_n S1​=∑n=1∞​an​, S 2 = ∑ n = 1 ∞ a 2 n − 1 S_2=sum_{n=1}^{infty}a_{2n-1} S2​=∑n=1∞​a2n−1​,求 S 1 , S 2 S_1,S_2 S1​,S2​的值.

解: a n = ∫ 0 1 ( x n − x n + 1 ) d x = 1 n + 1 − 1 n + 2 a_n=int_0^1{left( x^n-x^{n+1} ight) mathrm{d}x}=frac{1}{n+1}-frac{1}{n+2} an​=∫01​(xn−xn+1)dx=n+11​−n+21​ S 1 = ∑ n = 1 ∞ ( 1 n + 1 − 1 n + 2 ) = 1 2 S_1=sum_{n=1}^{infty}{left( frac{1}{n+1}-frac{1}{n+2} ight)}=frac{1}{2} S1​=n=1∑∞​(n+11​−n+21​)=21​ S 2 = ∑ n = 1 ∞ ( 1 2 n − 1 2 n + 1 ) = ∑ n = 2 ∞ ( − 1 ) n n = ∑ n = 0 ∞ ( − 1 ) n + 1 n + 1 + 1 = 1 − ln ⁡ 2 egin{aligned} S_2&=sum_{n=1}^{infty}{left( frac{1}{2n}-frac{1}{2n+1} ight)} \ &=sum_{n=2}^{infty}{frac{left( -1 ight) ^n}{n}} \ &=sum_{n=0}^{infty}{frac{left( -1 ight) ^{n+1}}{n+1}}+1 \ &=1-ln 2 end{aligned} S2​​=n=1∑∞​(2n1​−2n+11​)=n=2∑∞​n(−1)n​=n=0∑∞​n+1(−1)n+1​+1=1−ln2​

三、阶乘型

{ ( g ) ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = sin ⁡ x    ( 收敛域 ( − ∞ , + ∞ ) ) ( h ) ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = cos ⁡ x    ( 收敛域 ( − ∞ , + ∞ ) ) ( i ) ∑ n = 0 ∞ x n n ! = e x    ( 收敛域 ( − ∞ , + ∞ ) ) egin{cases} left( mathrm{g} ight) sum_{n=0}^{infty}{left( -1 ight) ^nfrac{x^{2n+1}}{left( 2n+1 ight) !}}=sin x,,left( ext{收敛域}left( -infty ,+infty ight) ight)\ \ left( mathrm{h} ight) sum_{n=0}^{infty}{left( -1 ight) ^nfrac{x^{2n}}{left( 2n ight) !}}=cos x,,left( ext{收敛域}left( -infty ,+infty ight) ight)\ \ left( mathrm{i} ight) sum_{n=0}^{infty}{frac{x^n}{n!}}=mathrm{e}^x,,left( ext{收敛域}left( -infty ,+infty ight) ight)\ end{cases} ⎩ ⎨ ⎧​(g)∑n=0∞​(−1)n(2n+1)!x2n+1​=sinx(收敛域(−∞,+∞))(h)∑n=0∞​(−1)n(2n)!x2n​=cosx(收敛域(−∞,+∞))(i)∑n=0∞​n!xn​=ex(收敛域(−∞,+∞))​

【例4】 求 ∑ n = 0 ∞ n 2 + 1 2 n ⋅ n ! . sum_{n=0}^{infty}{frac{n^2+1}{2^ncdot n!}}. n=0∑∞​2n⋅n!n2+1​.

解: ∑ n = 0 ∞ n 2 + 1 2 n ⋅ n ! = ∑ n = 0 ∞ n 2 + 1 n ! ( 1 2 ) n = ∑ n = 0 ∞ n ( n − 1 ) + n + 1 n ! ( 1 2 ) n = ∑ n = 2 ∞ 1 ( n − 2 ) ! ( 1 2 ) n + ∑ n = 1 ∞ 1 ( n − 1 ) ! ( 1 2 ) n + ∑ n = 0 ∞ 1 n ! ( 1 2 ) n = 1 4 ∑ n = 0 ∞ 1 n ! ( 1 2 ) n + 1 2 ∑ n = 0 ∞ 1 n ! ( 1 2 ) n + ∑ n = 0 ∞ 1 n ! ( 1 2 ) n = ( 1 4 + 1 2 + 1 ) e = 7 4 e egin{aligned} sum_{n=0}^{infty}{frac{n^2+1}{2^ncdot n!}}&=sum_{n=0}^{infty}{frac{n^2+1}{n!}}left( frac{1}{2} ight) ^n \ &=sum_{n=0}^{infty}{frac{nleft( n-1 ight) +n+1}{n!}}left( frac{1}{2} ight) ^n \ &=sum_{n=2}^{infty}{frac{1}{left( n-2 ight) !}}left( frac{1}{2} ight) ^n+sum_{n=1}^{infty}{frac{1}{left( n-1 ight) !}}left( frac{1}{2} ight) ^n+sum_{n=0}^{infty}{frac{1}{n!}}left( frac{1}{2} ight) ^n \ &=frac{1}{4}sum_{n=0}^{infty}{frac{1}{n!}}left( frac{1}{2} ight) ^n+frac{1}{2}sum_{n=0}^{infty}{frac{1}{n!}}left( frac{1}{2} ight) ^n+sum_{n=0}^{infty}{frac{1}{n!}}left( frac{1}{2} ight) ^n \ &=left( frac{1}{4}+frac{1}{2}+1 ight) sqrt{mathrm{e}} \ &=frac{7}{4}sqrt{mathrm{e}} end{aligned} n=0∑∞​2n⋅n!n2+1​​=n=0∑∞​n!n2+1​(21​)n=n=0∑∞​n!n(n−1)+n+1​(21​)n=n=2∑∞​(n−2)!1​(21​)n+n=1∑∞​(n−1)!1​(21​)n+n=0∑∞​n!1​(21​)n=41​n=0∑∞​n!1​(21​)n+21​n=0∑∞​n!1​(21​)n+n=0∑∞​n!1​(21​)n=(41​+21​+1)e ​=47​e ​​

【拓展】

对于 “二、分式型” ,可将结论推广为 ∑ n = 0 ∞ ( n + k − 1 ) . . . ( n + 1 ) x n = ( k − 1 ) ! ( 1 − x ) k    ( 收敛域 ( − 1 , 1 ) ) . sum_{n=0}^{infty}{left( n+k-1 ight) ...left( n+1 ight) x^n}=frac{left( k-1 ight) !}{left( 1-x ight) ^k},,left( ext{收敛域}left( -1,1 ight) ight) . n=0∑∞​(n+k−1)...(n+1)xn=(1−x)k(k−1)!​(收敛域(−1,1)).

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lizi9903@foxmail.com举报,一经查实,本站将立刻删除。