知方号

知方号

第26章 FMC

第26章     FMC—扩展外部SDRAM

全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn

野火视频教程优酷观看网址:http://i.youku.com/firege

 

 

本章参考资料:《STM32F4xx 中文参考手册2》、《STM32F4xx规格书》、库帮助文档《stm32f4xx_dsp_stdperiph_lib_um.chm》。

关于SDRAM存储器,请参考前面的"常用存储器介绍"章节,实验中SDRAM芯片的具体参数,请参考其规格书《IS42-45S16400J》来了解。

26.1 SDRAM控制原理

STM32控制器芯片内部有一定大小的SRAM及FLASH作为内存和程序存储空间,但当程序较大,内存和程序空间不足时,就需要在STM32芯片的外部扩展存储器了。

STM32F429系列芯片扩展内存时可以选择SRAM和SDRAM,由于SDRAM的"容量/价格"比较高,即使用SDRAM要比SRAM要划算得多。我们以SDRAM为例讲解如何为STM32扩展内存。

给STM32芯片扩展内存与给PC扩展内存的原理是一样的,只是PC上一般以内存条的形式扩展,内存条实质是由多个内存颗粒(即SDRAM芯片)组成的通用标准模块,而STM32直接与SDRAM芯片连接。见图 262,这是一种型号为IS42-45S16400J的SDRAM芯片内部结构框图,以它为模型进行学习。

图 261 SDRAM芯片外观

图 262 一种SDRAM芯片的内部结构框图

26.1.1 SDRAM信号线

图 262虚线框外引出的是SDRAM芯片的控制引脚,其说明见表 261。

表 261 SDRAM控制引脚说明

信号线

类型

说明

CLK

I

同步时钟信号,所有输入信号都在CLK为上升沿的时候被采集

CKE

I

时钟使能信号,禁止时钟信号时SDRAM会启动自刷新操作

CS#

I

片选信号,低电平有效

CAS#

I

列地址选通,为低电平时地址线表示的是列地址

RAS#

I

行地址选通,为低电平时地址线表示的是行地址

WE#

I

写入使能,低电平有效

DQM[0:1]

I

数据输入/输出掩码信号,表示DQ信号线的有效部分

BA[0:1]

I

Bank地址输入,选择要控制的Bank

A[0:11]

I

地址输入

DQ[0:15]

I/O

数据输入输出信号

除了时钟、地址和数据线,控制SDRAM还需要很多信号配合,它们具体作用在描述时序图时进行讲解。

26.1.2 控制逻辑

SDRAM内部的"控制逻辑"指挥着整个系统的运行,外部可通过CS、WE、CAS、RAS以及地址线来向控制逻辑输入命令,命令经过"命令器译码器"译码,并将控制参数保存到"模式寄存器中",控制逻辑依此运行。

26.1.3 地址控制

SDRAM包含有"A"以及"BA"两类地址线,A类地址线是行(Row)与列(Column)共用的地址总线,BA地址线是独立的用于指定SDRAM内部存储阵列号(Bank)。在命令模式下,A类地址线还用于某些命令输入参数。

26.1.4 SDRAM的存储阵列

要了解SDRAM的储存单元寻址以及"A"、"BA"线的具体运用,需要先熟悉它内部存储阵列的结构,见图 263。

图 263 SDRAM存储阵列模型

SDRAM内部包含的存储阵列,可以把它理解成一张表格,数据就填在这张表格上。和表格查找一样,指定一个行地址和列地址,就可以精确地找到目标单元格,这是SDRAM芯片寻址的基本原理。这样的每个单元格被称为存储单元,而这样的表则被称为存储阵列(Bank),目前设计的SDRAM芯片基本上内部都包含有4个这样的Bank,寻址时指定Bank号以及行地址,然后再指定列地址即可寻找到目标存储单元。SDRAM内部具有多个Bank时的结构见图 264。

图 264 SDRAM内有多个Bank时的结构图

SDRAM芯片向外部提供有独立的BA类地址线用于Bank寻址,而行与列则共用A类地址线。

图 262标号„中表示的就是它内部的存储阵列结构,通讯时当RAS线为低电平,则"行地址选通器"被选通,地址线A[11:0]表示的地址会被输入到"行地址译码及锁存器"中,作为存储阵列中选定的行地址,同时地址线BA[1:0]表示的Bank也被锁存,选中了要操作的Bank号;接着控制CAS线为低电平,"列地址选通器"被选通,地址线A[11:0]表示的地址会被锁存到"列地址译码器"中作为列地址,完成寻址过程。

26.1.5 数据输入输出

若是写SDRAM内容,寻址完成后,DQ[15:0]线表示的数据经过图 262标号…中的输入数据寄存器,然后传输到存储器阵列中,数据被保存;数据输出过程相反。

本型号的SDRAM存储阵列的"数据宽度"是16位(即数据线的数量),在与SDRAM进行数据通讯时,16位的数据是同步传输的,但实际应用中我们可能会以8位、16位的宽度存取数据,也就是说16位的数据线并不是所有时候都同时使用的,而且在传输低宽度数据的时候,我们不希望其它数据线表示的数据被录入。如传输8位数据的时候,我们只需要DQ[7:0]表示的数据,而DQ[15:8]数据线表示的数据必须忽略,否则会修改非目标存储空间的内容。所以数据输入输出时,还会使用DQM[1:0]线来配合,每根DQM线对应8位数据,如"DQM0(LDQM)"为低电平,"DQM1(HDQM)"为高电平时,数据线DQ[7:0]表示的数据有效,而DQ[15:8]表示的数据无效。

26.1.6 SDRAM的命令

控制SDRAM需要用到一系列的命令,见表 262。各种信号线状态组合产生不同的控制命令。

表 262 SDRAM命令表

命令名

CS#

RAS#

CAS#

WE#

DQM

ADDR

DQ

COMMAND INHIBIT

H

X

X

X

X

X

X

NO OPERATION

L

H

H

H

X

X

X

ACTIVE

L

L

H

H

X

Bank/row

X

READ

L

H

L

H

L/H

Bank/col

X

WRITE

L

H

L

L

L/H

Bank/col

Valid

PRECHARGE

L

L

H

L

X

Code

X

AUTO REFRESH or SELF REFRESH

L

L

L

H

X

X

X

LOAD MODE REGISTER

L

L

L

L

X

Op-code

X

BURST TERMINATE

L

H

H

L

X

X

active

表中的H表示高电平,L表示低电平,X表示任意电平,High-Z表示高阻态。

1.    命令禁止

只要CS引脚为高电平,即表示"命令禁止"(COMMAND INHBIT),它用于禁止SDRAM执行新的命令,但它不能停止当前正在执行的命令。

2.    空操作

"空操作"(NO OPERATION),"命令禁止"的反操作,用于选中SDRAM,以便接下来发送命令。

3.    行有效

进行存储单元寻址时,需要先选中要访问的Bank和行,使它处于激活状态。该操作通过"行有效"(ACTIVE)命令实现,见图 265,发送行有效命令时,RAS线为低电平,同时通过BA线以及A线发送Bank地址和行地址。

图 265 行有效命令时序图

4.    列读写

行地址通过"行有效"命令确定后,就要对列地址进行寻址了。"读命令"(READ)和"写命令"(WRITE)的时序很相似,见图 266,通过共用的地址线A发送列地址,同时使用WE引脚表示读/写方向,WE为低电平时表示写,高电平时表示读。数据读写时,使用DQM线表示有效的DQ数据线。

图 266 读取命令时序

本型号的SDRAM芯片表示列地址时仅使用A[7:0]线,而A10线用于控制是否"自动预充电",该线为高电平时使能,低电平时关闭。

5.    预充电

 SDRAM 的寻址具有独占性,所以在进行完读写操作后,如果要对同一个Bank 的另一行进行寻址,就要将原来有效(ACTIVE)的行关闭,重新发送行/列地址。Bank 关闭当前工作行,准备打开新行的操作就是预充电(Precharge)。

预充电可以通过独立的命令控制,也可以在每次发送读写命令的同时使用"A10"线控制自动进行预充电。实际上,预充电是一种对工作行中所有存储阵列进行数据重写,并对行地址进行复位,以准备新行的工作。

独立的预充电命令时序见图 267。该命令配合使用A10线控制,若A10为高电平时,所有Bank都预充电;A10为低电平时,使用BA线选择要预充电的Bank。

图 267 PRECHARGE命令时序

6.    刷新

SDRAM要不断进行刷新(Refresh)才能保留住数据,因此它是 DRAM 最重要的操作。刷新操作与预充电中重写的操作本质是一样的。

但因为预充电是对一个或所有Bank 中的工作行操作,并且不定期,而刷新则是有固定的周期,依次对所有行进行操作,以保证那些久久没被访问的存储单元数据正确。

刷新操作分为两种:"自动刷新"(Auto Refresh)与"自我刷新"(Self Refresh),发送命令后CKE时钟为有效时(低电平),使用自动刷新操作,否则使用自我刷新操作。不论是何种刷新方式,都不需要外部提供行地址信息,因为这是一个内部的自动操作。

对于"自动刷新", SDRAM 内部有一个行地址生成器(也称刷新计数器)用来自动地依次生成行地址,每收到一次命令刷新一行。在刷新过程中,所有Bank都停止工作,而每次刷新所占用的时间为N个时钟周期(视SDRAM型号而定,通常为N=9),刷新结束之后才可进入正常的工作状态,也就是说在这N个时钟期间内,所有工作指令只能等待而无法执行。一次次地按行刷新,刷新完所有行后,将再次对第一行重新进行刷新操作,这个对同一行刷新操作的时间间隔,称为SDRAM的刷新周期,通常为64ms。显然刷新会对SDRAM的性能造成影响,但这是它的DRAM的特性决定的,也是DRAM相对于SRAM取得成本优势的同时所付出的代价。

"自我刷新"则主要用于休眠模式低功耗状态下的数据保存,也就是说即使外部控制器不工作了,SDRAM都能自己确保数据正常。在发出"自我刷新"命令后,将 CKE 置于无效状态(低电平),就进入自我刷新模式,此时不再依靠外部时钟工作,而是根据SDRAM内部的时钟进行刷新操作。在自我刷新期间除了 CKE 之外的所有外部信号都是无效的,只有重新使 CKE 有效才能退出自我刷新模式并进入正常操作状态。

7.    加载模式寄存器

前面提到SDRAM的控制逻辑是根据它的模式寄存器来管理整个系统的,而这个寄存器的参数就是通过"加载模式寄存器"命令(LOAD MODE REGISTER)来配置的。发送该命令时,使用地址线表示要存入模式寄存器的参数"OP-Code",各个地址线表示的参数见图 268。

图 268 模式寄存器解析图

模式寄存器的各个参数介绍如下:

Burst Length

Burst Length译为突发长度,下面简称BL。突发是指在同一行中相邻的存储单元连续进行数据传输的方式,连续传输所涉及到存储单元(列)的数量就是突发长度。

上文讲到的读/写操作,都是一次对一个存储单元进行寻址,如果要连续读/写就还要对当前存储单元的下一个单元进行寻址,也就是要不断的发送列地址与读/写命令(行地址不变,所以不用再对行寻址)。虽然由于读/写延迟相同可以让数据的传输在 I/O 端是连续的,但它占用了大量的内存控制资源,在数据进行连续传输时无法输入新的命令,效率很低。

为此,人们开发了突发传输技术,只要指定起始列地址与突发长度,内存就会依次地自动对后面相应数量的存储单元进行读/写操作而不再需要控制器连续地提供列地址。这样,除了第一笔数据的传输需要若干个周期外,其后每个数据只需一个周期的即可获得。其实我们在EERPOM及FLASH读写章节讲解的按页写入就是突发写入,而它们的读取过程都是突发性质的。

非突发连续读取模式:不采用突发传输而是依次单独寻址,此时可等效于 BL=1。虽然也可以让数据连续地传输,但每次都要发送列地址与命令信息,控制资源占用极大。突发连续读取模式:只要指定起始列地址与突发长度,寻址与数据的读取自动进行,而只要控制好两段突发读取命令的间隔周期(与 BL 相同)即可做到连续的突发传输。而BL 的数值,也是不能随便设或在数据进行传输前临时决定。在初始化SDRAM调用LOAD MODE REGISTER命令时就被固定。BL可用的选项是 1、2、4、8,常见的设定是 4 和8。若传输时实际需要数据长度小于设定的BL值,则调用"突发停止"(BURST TERMINATE)命令结束传输。

BT

模式寄存器中的BT位用于设置突发模式,突发模式分为顺序(Sequential)与间隔(Interleaved)两种。在顺序方式中,操作按地址的顺序连续执行,如果是间隔模式,则操作地址是跳跃的。跳跃访问的方式比较乱,不太符合思维习惯,我们一般用顺序模式。顺序访问模式时按照"0-1-2-3-4-5-6-7"的地址序列访问。

CASLatency

模式寄存器中的CASLatency是指列地址选通延迟,简称CL。在发出读命令(命令同时包含列地址)后,需要等待几个时钟周期数据线DQ才会输出有效数据,这之间的时钟周期就是指CL,CL一般可以设置为2或3个时钟周期,见图 269。

图 269 CL=2和CL=3的说明图

CL只是针对读命令时的数据延时,在写命令是不需要这个延时的,发出写命令时可同时发送要写入的数据。

Op Mode

OP Mode指Operating Mode,SDRAM的工作模式。当它被配置为"00"的时候表示工作在正常模式,其它值是测试模式或被保留的设定。实际使用时必须配置成正常模式。

WB

WB用于配置写操作的突发特性,可选择使用BL设置的突发长度或非突发模式。

Reserved

模式寄存器的最后三位的被保留,没有设置参数。

26.1.7 SDRAM的初始化流程

最后我们来了解SDRAM的初始化流程。SDRAM并不是上电后立即就可以开始读写数据的,它需要按步骤进行初始化,对存储矩阵进行预充电、刷新并设置模式寄存器,见图 2610。

图 2610 SDRAM初始化流程

该流程说明如下:

(1)    给SDRAM上电,并提供稳定的时钟,至少100us;

(2)    发送"空操作"(NOP)命令;

(3)    发送"预充电"(PRECHARGE)命令,控制所有Bank进行预充电,并等待tRP时间, tRP表示预充电与其它命令之间的延迟;

(4)    发送至少2个"自动刷新"(AUTO REFRESH)命令,每个命令后需等待tRFC时间,tRFC表示自动刷新时间;

(5)    发送"加载模式寄存器"(LOAD MODE REGISTER)命令,配置SDRAM的工作参数,并等待tMRD时间,tMRD表示加载模式寄存器命令与行有行或刷新命令之间的延迟;

(6)    初始化流程完毕,可以开始读写数据。

其中tRP、tRFC、tMRD等时间参数跟具体的SDRAM有关,可查阅其数据手册获知,STM32 FMC访问时配置需要这些参数。

26.1.8 SDRAM的读写流程

初始化步骤完成,开始读写数据,其时序流程见图 2611及图 2612。

图 2611 CL=2时,带AUTO PRECHARGE的读时序

图 2612 带AUTO PRECHARGE 命令的写时序

读时序和写时序的命令过程很类似,下面我们统一解说:

(1)    发送"行有效"(ACTIVE)命令,发送命令的同时包含行地址和Bank地址,然后等待tRCD时间,tRCD表示行有效命令与读/写命令之间的延迟;

(2)    发送"读/写"(READ/WRITE)命令,在发送命令的同时发送列地址,完成寻址的地址输入。对于读命令,根据模式寄存器的CL定义,延迟CL个时钟周期后,SDRAM的数据线DQ才输出有效数据,而写命令是没有CL延迟的,主机在发送写命令的同时就可以把要写入的数据用DQ输入到SDRAM中,这是读命令与写命令的时序最主要的区别。图中的读/写命令都通过地址线A10控制自动预充电,而SDRAM接收到带预充电要求的读/写命令后,并不会立即预充电,而是等待tWR时间才开始,tWR表示写命令与预充电之间的延迟;

(3)    执行"预充电"(auto precharge)命令后,需要等待tRP时间,tRP表示预充电与其它命令之间的延迟;

(4)    图中的标号„处的tRAS,表示自刷新周期,即在前一个"行有效"与"预充电"命令之间的时间;

(5)    发送第二次"行有效"(ACTIVE)命令准备读写下一个数据,在图中的标号…处的tRC,表示两个行有效命令或两个刷新命令之间的延迟。

其中tRCD、tWR、tRP、tRAS以及tRC等时间参数跟具体的SDRAM有关,可查阅其数据手册获知,STM32 FMC访问时配置需要这些参数。

26.2 FMC简介

STM32F429使用FMC外设来管理扩展的存储器,FMC是Flexible Memory Controller的缩写,译为可变存储控制器。它可以用于驱动包括SRAM、SDRAM、NOR FLASH以及NAND FLSAH类型的存储器。在其它系列的STM32控制器中,只有FSMC控制器(Flexible Static Memory Controller),译为可变静态存储控制器,所以它们不能驱动SDRAM这样的动态存储器,因为驱动SDRAM时需要定时刷新,STM32F429的FMC外设才支持该功能,且只支持普通的SDRAM,不支持DDR类型的SDRAM。我们只讲述FMC的SDRAM控制功能。

26.3FMC框图剖析

STM32的FMC外设内部结构见图 2613。

图 2613 FMC控制器框图

1.    通讯引脚

在框图的右侧是FMC外设相关的控制引脚,由于控制不同类型存储器的时候会有一些不同的引脚,看起来有非常多,其中地址线FMC_A和数据线FMC_D是所有控制器都共用的。这些FMC引脚具体对应的GPIO端口及引脚号可在《STM32F4xx规格书》中搜索查找到,不在此列出。针对SDRAM控制器,我们是整理出以下的FMC与SDRAM引脚对照表 263。

表 263 FMC中的SDRAM控制信号线

FMC引脚名称

对应SDRAM引脚名

说明

FMC_NBL[3:0]

DQM[3:0]

数据掩码信号

FMC_A[12:0]

A[12:0]

行/列地址线

FMC_A[15:14]

BA[1:0]

Bank地址线

FMC_D[31:0]

DQ[31:0]

数据线

FMC_SDCLK

CLK

同步时钟信号

FMC_SDNWE

WE#

写入使能

FMC_SDCKE[1:0]

CKE

SDCKE0:SDRAM 存储区域 1 时钟使能

SDCKE1:SDRAM 存储区域 2 时钟使能

FMC_SDNE[1:0]

--

SDNE0:SDRAM 存储区域 1 芯片使能

SDNE1:SDRAM 存储区域 2 芯片使能

FMC_NRAS

RAS#

行地址选通信号

FMC_NCAS

CAS#

列地址选通信号

其中比较特殊的是FMC_A[15:14]引脚用作Bank的寻址线;而FMC_SDCKE线和FMC_SDNE都各有2条,FMC_SDCKE用于控制SDRAM的时钟使能,FMC_SDNE用于控制SDRAM芯片的片选使能。它们用于控制STM32使用不同的存储区域驱动SDRAM,使用编号为0的信号线组会使用STM32的存储器区域1,使用编号为1的信号线组会使用存储器区域2。使用不同存储区域时,STM32访问SDRAM的地址不一样,具体将在"FMC的地址映射"小节讲解。

2.    存储器控制器

上面不同类型的引脚是连接到FMC内部对应的存储控制器中的。NOR/PSRAM/SRAM设备使用相同的控制器,NAND/PC卡设备使用相同的控制器,而SDRAM存储器使用独立的控制器。不同的控制器有专用的寄存器用于配置其工作模式。

控制SDRAM的有FMC_SDCR1/FMC_SDCR2控制寄存器、FMC_SDTR1/FMC_SDTR2时序寄存器、FMC_SDCMR命令模式寄存器以及FMC_SDRTR刷新定时器寄存器。其中控制寄存器及时序寄存器各有2个,分别对应于SDRAM存储区域1和存储区域2的配置。

FMC_SDCR控制寄存器可配置SDCLK的同步时钟频率、突发读使能、写保护、CAS延迟、行列地址位数以及数据总线宽度等。

FMC_SDTR时序寄存器用于配置SDRAM访问时的各种时间延迟,如TRP行预充电延迟、TMRD加载模式寄存器激活延迟等。

FMC_SDCMR命令模式寄存器用于存储要发送到SDRAM模式寄存器的配置,以及要向SDRAM芯片发送的命令。

FMC_SDRTR用于配置SDRAM的自动刷新周期。

3.    时钟控制逻辑

FMC外设挂载在AHB3总线上,时钟信号来自于HCLK(默认180MHz),控制器的时钟输出就是由它分频得到。如SDRAM控制器的FMC_SDCLK引脚输出的时钟,是用于与SDRAM芯片进行同步通讯,它的时钟频率可通过FMC_SDCR1寄存器的SDCLK位配置,可以配置为HCLK的1/2或1/3,也就是说,与SDRAM通讯的同步时钟最高频率为90MHz。

26.4 FMC的地址映射

FMC连接好外部的存储器并初始化后,就可以直接通过访问地址来读写数据,这种地址访问与I2C EEPROM、SPI FLASH的不一样,后两种方式都需要控制I2C或SPI总线给存储器发送地址,然后获取数据;在程序里,这个地址和数据都需要分开使用不同的变量存储,并且访问时还需要使用代码控制发送读写命令。而使用FMC外接存储器时,其存储单元是映射到STM32的内部寻址空间的;在程序里,定义一个指向这些地址的指针,然后就可以通过指针直接修改该存储单元的内容,FMC外设会自动完成数据访问过程,读写命令之类的操作不需要程序控制。FMC的地址映射见图 2614。

图 2614 FMC的地址映射

图中左侧的是Cortex-M4内核的存储空间分配,右侧是STM32 FMC外设的地址映射。可以看到FMC的NOR/PSRAM/SRAM/NAND FLASH以及PC卡的地址都在External RAM地址空间内,而SDRAM的地址是分配到External device区域的。正是因为存在这样的地址映射,使得访问FMC控制的存储器时,就跟访问STM32的片上外设寄存器一样(片上外设的地址映射即图中左侧的"Peripheral"区域)。

1.    SDRAM的存储区域

FMC把SDRAM的存储区域分成了Bank1和Bank2两块,这里的Bank与SDRAM芯片内部的Bank是不一样的概念,只是FMC的地址区域划分而已。每个Bank有不一样的起始地址,且有独立的FMC_SDCR控制寄存器和FMC_SDTR时序寄存器,还有独立的FMC_SDCKE时钟使能信号线和FMC_SDCLK信号线。FMC_SDCKE0和FMC_SDCLK0对应的存储区域1的地址范围是0xC000 0000-0xCFFF FFFF,而FMC_SDCKE1和FMC_SDCLK1对应的存储区域2的地址范围是0xD000 0000- 0xDFFF FFFF。当程序里控制内核访问这些地址的存储空间时,FMC外设会即会产生对应的时序,对它外接的SDRAM芯片进行读写。

2.    External RAM 与External device的区别

比较遗憾的是FMC给SDRAM分配的区域不在External RAM区,这个区域可以直接执行代码,而SDRAM所在的External device区却不支持这个功能。这里说的可直接执行代码的特性就是在"常用存储器"章节介绍的XIP(eXecute In Place)特性,即存储器上若存储了代码,CPU可直接访问代码执行,无需缓存到其它设备上再运行;而且XIP特性还对存储器的种类有要求,SRAM/SDRAM及NOR Flash都支持这种特性,而NAND FLASH及PC卡是不支持XIP的。结合存储器的特性和STM32 FMC存储器种类的地址分配,就发现它的地址规划不合理了,NAND FLASH和PC卡这些不支持XIP的存储器却占据了External RAM的空间,而支持XIP的SDRAM存储器的空间却被分配到了Extern device区。为了解决这个问题,通过配置"SYSCFG_MEMRMP"寄存器的"SWP_FMC"寄存器位可用于交换SDRAM与NAND/PC卡的地址映射,使得存储在SDRAM中的代码能被执行,只是由于SDRAM的最高同步时钟是90MHz,代码的执行速度会受影响。

本章主要讲解当STM32的片内SRAM不够用时使用SDRAM扩展内存,但假如程序太大,它的程序空间FLASH不够用怎么办呢?首先是裁剪代码,目前STM32F429系列芯片内部FLASH空间最高可达2MB,实际应用中只要我们把代码中的图片、字模等占据大空间的内容放到外部存储器中,纯粹的代码很难达到2MB。如果还不够用,非要扩展程序空间的话,一种方法是使用FMC扩展NOR FLASH,把程序存储到NOR上,程序代码能够直接在NOR FLASH上执行。另一种方法是把程序存储在其它外部存储器,如SD卡,需要时把存储在SD卡上的代码加载到SRAM或SDRAM上,再在RAM上执行代码。

如果SDRAM不是用于存储可执行代码,只是用来保存数据的话,在External RAM或Exteranl device区域都没有区别,不需要与NAND的映射地址交换。

26.5 SDRAM时序结构体

控制FMC使用SDRAM存储器时主要是配置时序寄存器以及控制寄存器,利用ST标准库的SDRAM时序结构体以及初始化结构体可以很方便地写入参数。

SDRAM时序结构体的成员见代码清单 241。

代码清单 261 SDRAM时序结构体FMC_SDRAMTimingInitTypeDef

1 /* @brief 控制SDRAM的时序参数,这些参数的单位都是"周期"

2 * 各个参数的值可设置为1-16个周期。 */

3 typedef struct

4 {

5 uint32_t FMC_LoadToActiveDelay; /*TMRD:加载模式寄存器命令后的延迟*/

6 uint32_t FMC_ExitSelfRefreshDelay; /*TXSR:自刷新命令后的延迟 */

7 uint32_t FMC_SelfRefreshTime; /*TRAS:自刷新时间*/

8 uint32_t FMC_RowCycleDelay; /*TRC:行循环延迟*/

9 uint32_t FMC_WriteRecoveryTime; /*TWR:恢复延迟 */

10 uint32_t FMC_RPDelay; /*TRP:行预充电延迟*/

11 uint32_t FMC_RCDDelay; /*TRCD:行到列延迟*/

12 } FMC_SDRAMTimingInitTypeDef;

这个结构体成员定义的都是SDRAM发送各种命令后必须的延迟,它的配置对应到FMC_SDTR中的寄存器位。所有成员参数值的单位是周期,参数值大小都可设置成"1-16"。关于这些延时时间的定义可以看"SDRAM初始化流程"和"SDRAM读写流程"小节的时序图了解。具体参数值根据SDRAM芯片的手册说明来配置。各成员介绍如下:

(1)    FMC_LoadToActiveDelay

本成员设置TMRD延迟(Load Mode Register to Active),即发送加载模式寄存器命令后要等待的时间,过了这段时间才可以发送行有效或刷新命令。

(2)    FMC_ExitSelfRefreshDelay

本成员设置退出TXSR延迟(Exit Self-refresh delay),即退出自我刷新命令后要等待的时间,过了这段时间才可以发送行有效命令。

(3)     FMC_SelfRefreshTime

本成员设置自我刷新时间TRAS,即发送行有效命令后要等待的时间,过了这段时间才执行预充电命令。

(4)     FMC_RowCycleDelay

本成员设置TRC延迟(Row cycle delay),即两个行有效命令之间的延迟,以及两个相邻刷新命令之间的延迟

(5)     FMC_WriteRecoveryTime

本成员设置TWR延迟(Recovery delay),即写命令和预充电命令之间的延迟,等待这段时间后才开始执行预充电命令。

(6)     FMC_RPDelay

本成员设置TRP延迟(Row precharge delay),即预充电命令与其它命令之间的延迟。

(7)     FMC_RCDDelay

本成员设置TRCD延迟(Row to column delay),即行有效命令到列读写命令之间的延迟。

 

这个SDRAMTimingInitTypeDef时序结构体配置的延时参数,将作为下一节的FMC SDRAM初始化结构体的一个成员。

26.6 SDRAM初始化结构体

FMC的SDRAM初始化结构体见代码清单 262。

代码清单 262 SDRAM初始化结构体FMC_SDRAMInitTypeDef

1 /* @brief FMC SDRAM 初始化结构体类型定义 */

2 typedef struct

3 {

4 uint32_t FMC_Bank; /*选择FMC的SDRAM存储区域*/

5 uint32_t FMC_ColumnBitsNumber; /*定义SDRAM的列地址宽度 */

6 uint32_t FMC_RowBitsNumber; /*定义SDRAM的行地址宽度 */

7 uint32_t FMC_SDMemoryDataWidth; /*定义SDRAM的数据宽度 */

8 uint32_t FMC_InternalBankNumber; /*定义SDRAM内部的Bank数目 */

9 uint32_t FMC_CASLatency; /*定义CASLatency的时钟个数*/

10 uint32_t FMC_WriteProtection; /*定义是否使能写保护模式 */

11 uint32_t FMC_SDClockPeriod; /*配置同步时钟SDCLK的参数*/

12 uint32_t FMC_ReadBurst; /*是否使能突发读模式*/

13 uint32_t FMC_ReadPipeDelay; /*定义在CAS个延迟后再等待多

14 少个HCLK时钟才读取数据 */

15 FMC_SDRAMTimingInitTypeDef* FMC_SDRAMTimingStruct; /*定义SDRAM的时序参数*/

16 } FMC_SDRAMInitTypeDef;

这个结构体,除最后一个成员是上一小节讲解的时序配置外,其它结构体成员的配置都对应到FMC_SDCR中的寄存器位。各个成员意义在前面的小节已有具体讲解,其可选参数介绍如下,括号中的是STM32标准库定义的宏:

(1)    FMC_Bank

本成员用于选择FMC映射的SDRAM存储区域,可选择存储区域1或2 (FMC_Bank1/2_SDRAM)。

(2)    FMC_ColumnBitsNumber

本成员用于设置要控制的SDRAM的列地址宽度,可选择8-11位(FMC_ColumnBits_Number_8/9/10/11b)。

(3)     FMC_RowBitsNumber

本成员用于设置要控制的SDRAM的行地址宽度,可选择设置成11-13位(FMC_RowBits_Number_11/12/13b)。

(4)    FMC_SDMemoryDataWidth

本成员用于设置要控制的SDRAM的数据宽度,可选择设置成8、16或32位(FMC_SDMemory_Width_8/16/32b)。

(5)     FMC_InternalBankNumber

本成员用于设置要控制的SDRAM的内部Bank数目,可选择设置成2或4个Bank数目(FMC_InternalBank_Number_2/4),请注意区分这个结构体成员与FMC_Bank的区别。

(6)     FMC_CASLatency

本成员用于设置CASLatency即CL的时钟数目,可选择设置为1、2或3个时钟周期(FMC_CAS_Latency_1/2/3)。

(7)     FMC_WriteProtection

本成员用于设置是否使能写保护模式,如果使能了写保护则不能向SDRAM写入数据,正常使用都是禁止写保护的。

(8)     FMC_SDClockPeriod

本成员用于设置FMC与外部SDRAM通讯时的同步时钟参数,可以设置成STM32的HCLK时钟频率的1/2、1/3或禁止输出时钟(FMC_SDClock_Period_2/3或FMC_SDClock_Disable)。

(9)     FMC_ReadBurst

本成员用于设置是否使能突发读取模式,禁止时等效于BL=1,使能时BL的值等于模式寄存器中的配置。

(10)     FMC_ReadPipeDelay

本成员用于配置在CASLatency个时钟周期后,再等待多少个HCLK时钟周期才进行数据采样,在确保正确的前提下,这个值设置为越短越好,可选择设置的参数值为0、1或2个HCLK时钟周期(FMC_ReadPipe_Delay_0/1/2)。

(11)     FMC_SDRAMTimingStruct

这个成员就是我们上一小节讲解的SDRAM时序结构体了,设置完时序结构体后再把赋值到这里即可。

 

配置完SDRAM初始化结构体后,调用FMC_SDRAMInit函数把这些配置写入到FMC的SDRAM控制寄存器及时序寄存器,实现FMC的初始化。

26.7 SDRAM命令结构体

控制SDRAM时需要各种命令,通过向FMC的命令模式寄存器FMC_SDCMR写入控制参数,即可控制FMC对外发送命令,为了方便使用,STM32标准库也把它封装成了结构体,见代码清单 263。

代码清单 263 SDRAM命令结构体

1 typedef struct

2 {

3 uint32_t FMC_CommandMode; /*要发送的命令 */

4 uint32_t FMC_CommandTarget; /*目标存储器区域 */

5 uint32_t FMC_AutoRefreshNumber; /*若发送的是自动刷新命令,

6 此处为发送的刷新次数,其它命令时无效 */

7 uint32_t FMC_ModeRegisterDefinition; /*若发送的是加载模式寄存器命令,

8 此处为要写入SDRAM模式寄存器的参数 */

9 } FMC_SDRAMCommandTypeDef;

命令结构体中的各个成员介绍如下:

(1)    FMC_CommandMode

本成员用于配置将要发送的命令,它可以被赋值为表 264中的宏,这些宏代表了不同命令;

表 264 FMC可输出的SDRAM控制命令

命令说明

FMC_Command_Mode_normal

正常模式命令

FMC_Command_Mode_CLK_Enabled

使能CLK命令

FMC_Command_Mode_PALL

对所有Bank预充电命令

FMC_Command_Mode_AutoRefresh

自动刷新命令

FMC_Command_Mode_LoadMode

加载模式寄存器命令

FMC_Command_Mode_Selfrefresh

自我刷新命令

FMC_Command_Mode_PowerDown

掉电命令

(2)    FMC_CommandTarget

本成员用于选择要控制的FMC存储区域,可选择存储区域1或2(FMC_Command_Target_bank1/2);

(3)     FMC_AutoRefreshNumber

有时需要连续发送多个"自动刷新"(Auto Refresh)命令时,配置本成员即可控制它发送多少次,可输入参数值为1-16,若发送的是其它命令,本参数值无效。如FMC_CommandMode成员被配置为宏FMC_Command_Mode_AutoRefresh,而FMC_AutoRefreshNumber被设置为2时,FMC就会控制发送2次自动刷新命令。

(4)    FMC_ModeRegisterDefinition

当向SDRAM发送加载模式寄存器命令时,这个结构体成员的值将通过地址线发送到SDRAM的模式寄存器中,这个成员值长度为13位,各个位一一对应SDRAM的模式寄存器。

配置完这些结构体成员,调用库函数FMC_SDRAMCmdConfig即可把这些参数写入到FMC_SDCMR寄存器中,然后FMC外设就会发送相应的命令了。

26.8 FMC—扩展外部SDRAM实验

本小节以型号为"IS42S16400J"的SDRAM芯片为STM32扩展内存。它的行地址宽度为12位,列地址宽度为8位,内部含有4个Bank,数据线宽度为16位,容量大小为8MB。

学习本小节内容时,请打开配套的"FMC—读写SDRAM"工程配合阅读。本实验仅讲解基本的SDRAM驱动,不涉及内存管理的内容,在本书的《MDK编译过程及文件类型全解》章节将会讲解使用更简单的方法从SDRAM中分配变量,以及使用C语言标准库的malloc函数来分配SDRAM的空间。

26.8.1 硬件设计

图 2615 SDRAM硬件连接图

SDRAM与STM32相连的引脚非常多,主要是地址线和数据线,这些具有特定FMC功能的GPIO引脚可查询《STM32F4xx规格书》中的说明来了解。

关于该SDRAM芯片的

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至lizi9903@foxmail.com举报,一经查实,本站将立刻删除。